Introduction to bed, bank and shore protection
Cover:
“De machtige grijper, overwinnaar in den strijd tegen de zee” (The mighty grab, victor of the battle against the sea).
Johan Hendrik van Mastenbroek (1875 - 1945), Oil on canvas, Zuiderzeemuseum, Enkhuizen, The Netherlands.
Introduction to bed, bank and shore protection

Gerrit Jan Schiereck
updated by Henk Jan Verhagen

Delft Academic Press
A little learning is a dangerous thing;
Drink deep or taste not the Pierian spring.
Alexander Pope (1688-1744)

Preface

Every book is unique. This one is because of a combination of two things:

- the coverage of subjects from hydraulic, river and coastal engineering, normally treated in separate books
- the link between theoretical fluid mechanics and practical hydraulic engineering.

On the one side, many fine textbooks on fluid motion, wave hydrodynamics etc. are available, while on the other side one can find lots of manuals on hydraulic engineering topics. The link between theory and practice is seldom covered, making the use of manuals without understanding the backgrounds a "dangerous thing". Using a cookbook without having learned to cook is no guarantee for a tasty meal and distilling whisky without a thorough training is plainly dangerous. Manuals are often based on experience, either in coastal or river engineering, or they are focussing on hydraulic structures, like weirs and sluices. In this way, the overlap and analogy between the various subjects is missed, which is a pity, especially in nonstandard cases where insight into the processes is a must. This book tries to bridge the gap between theoretical hydrodynamics and designing protections. Imagination of what happens at an interface between soil and water is one of the keywords. However, this can only partly be derived from a textbook. Using one's eyes every time one is on a river bank, a bridge or a beach is also part of this process. In the same sense, a computer program never can replace experimental research completely and every student who wants to become a hydraulic engineer should spend some time doing experiments whenever there is a possibility. Anyway, the purpose of this book is to offer some know how, but even more important, some know why.

The painting on the cover represents three major elements in protection against water. The inset right under pictures the power of water, symbolised by Neptune who is enthousiastically trying to enter the gate while money and knowledge, symbolised by Mercury and Minerva, respectively, are the means to stop this. The painting itself depicts the granting of the right to establish an administrative body by the people of Rhineland, a polder area, by the count of Holland in 1255. People's participation is always a major issue in hydraulic engineering, as most projects serve a public goal. People's participation and money is not what this book offers, but I do hope that it will contribute to the knowledge to be able to make durable and sustainable protections.

Gerrit Jan Schiereck, Dordrecht, December 2000
Preface to the 2nd edition

The main reason to make a 2nd edition of this book was that we run out of copies. The basic setup of the book has not been changed. Also the fundamentals did not change in the last decade. Some new findings on turbulence have been added; the chapters on execution have been updated to the latest level of technology. Also a number of new examples from the last decade have been included. Finally the book is again in line with the latest standards. To indicate that this is a new version of the book a new cover has been designed. On the first cover an allegoric painting from the office of the waterboard of Rhineland was shown. For this edition I have selected a painting of Mastenbroek (1932) depicting the closure of the Afsluitdijk. A situation where the stability of the bed material was essential for the completion of the works. The painting expresses the strength of the grab, needed to combat the strength of the water.

Henk Jan Verhagen, Delft, July 2012

Acknowledgement

It is impossible to compile a book like this without the help of many people. In alphabetical order, we want to thank for their major or minor, but always important, contributions: Kees d' Angremond, Alice Beurze, Jeroen van den Bos, Henri Fontijn, Pieter van Gelder, Mark Lindo, Jelle Olthof, Jacques Oostveen, Kristian Pilarczyk, Hermine Schiereck, Jacques Schievink, Wijnand Tutuarima, Wim Venis, Arnold Verruijt, Dick de Wilde.

Trademarks

The use of trademarks in this publication does not imply any endorsement of disapproval of this product by the authors or their employees.

The following trademarks used in this book are acknowledged:

Accropode Sogreah Consultants, France
Armourflex Armourtecc, USA
Basalton Holcim betonproducten bv, Rotterdam, Netherlands
Elastocoast Elastogran GmbH, Lemförde, Germany (subsidiary of BASF)
Fixtone Heijmans Beton en Waterbouw, Rosmalen, Netherlands
Hydroblock betonzuilen Betonfabriek Haringman, Goes, Netherlands
Xbloc Delta Marine Consultants (BAM Infracom), Netherlands
Contents

Preface v
Preface to the 2nd edition vi

1 INTRODUCTION 1
1.1 How to look at protections 2
 1.1.1 Why and when 2
 1.1.2 Design 3
 1.1.3 Science or craftsmanship 5
1.2 How to deal with protections 6
 1.2.1 Protection against what? 6
 1.2.2 Failure and design 10
 1.2.3 Load and strength 12
1.3 How to deal with this book 16

2 FLOW – LOADS 19
2.1 Introduction 20
2.2 Turbulence 21
2.3 Wall flow 24
 2.3.1 Uniform flow 24
 2.3.2 Non-uniform flow 26
2.4 Free flow 28
 2.4.1 Mixing layers 28
 2.4.2 Jets 29
2.5 Combination of wall flow and free flow 31
 2.5.1 Flow separation 31
 2.5.2 Vertical expansion (backward-facing step) 32
 2.5.3 Vertical constriction and expansion (sill) 33
 2.5.4 Horizontal expansion 34
 2.5.5 Horizontal constriction and expansion (groyne) 35
 2.5.6 Detached bodies 36
2.6 Load reduction 38
2.7 Summary 39
2.8 APPENDICES 40
 2.8.1 Basic equations 40
 2.8.2 Why turbulence? 43

3 FLOW – STABILITY 47
3.1 Introduction 48
3.2 Uniform flow - horizontal bed 48
 3.2.1 Basic equations 48
 3.2.2 Threshold of motion 53
CONTENTS

6 POROUS FLOW – FILTERS 127
6.1 General 128
6.2 Granular filters 130
 6.2.1 Introduction 130
 6.2.2 Geometrically closed filters 131
 6.2.3 Geometrically open filters 133
6.3 Geotextiles 139
 6.3.1 Introduction 139
 6.3.2 Retention criteria 141
 6.3.3 Permeability criteria 142
 6.3.4 Overall stability 143
 6.3.5 Survivability and durability 144
6.4 Summary 144

7 WAVES – LOADS 147
7.1 Introduction 148
7.2 Non-breaking waves 150
 7.2.1 General 150
 7.2.2 Shear stress 153
7.3 Breaking waves 156
 7.3.1 General 156
 7.3.2 Waves on a foreshore 159
7.4 Waves on slopes 161
 7.4.1 General 161
 7.4.2 Run-up and run-down 163
 7.4.3 Overtopping 166
 7.4.4 Wave impact 169
7.5 Load reduction 169
7.6 Summary 171
7.7 APPENDICES 172
 7.7.1 Linear wave theory 172
 7.7.2 Wave statistics 176
 7.7.3 Wave generation 181

8 WAVES - EROSION AND STABILITY 185
8.1 Erosion 186
 8.1.1 Erosion of slopes 186
 8.1.2 Bottom erosion 187
 8.1.3 Wave scour around detached bodies 188
8.2 Stability general 190
8.3 Stability of loose grains 193
 8.3.1 Stability in non-breaking waves 193
 8.3.2 Stability in breaking waves 194
 8.3.3 Other aspects 201
8.4 Stability of coherent material
 8.4.1 Placed-block revetments
 8.4.2 Interlocking blocks
 8.4.3 Generalised approach
 8.4.4 Impervious layers
8.5 Material quality
8.6 Summary

9 SHIPS
9.1 Introduction
9.2 Loads
 9.2.1 Limit speed
 9.2.2 Primary waves
 9.2.3 Secondary waves
 9.2.4 Propeller wash
9.3 Stability
 9.3.1 Primary waves
 9.3.2 Secondary waves
 9.3.3 Propeller wash
9.4 Erosion
9.5 Summary

10 DIMENSIONS
10.1 General
10.2 Probabilistics
 10.2.1 Introduction
 10.2.2 Comparison of methods
 10.2.3 Level III
 10.2.4 Level II
 10.2.5 Level I
 10.2.6 Evaluation
10.3 Maintenance
 10.3.1 Introduction
 10.3.2 Maintenance policies
 10.3.3 Probabilistic approach of inspection
10.4 Failure mechanisms
 10.4.1 Introduction
 10.4.2 Systems
 10.4.3 Fault trees
 10.4.4 Examples
10.5 Summary
10.6 APPENDIX: Probabilistic approach Level II
11 PROTECTIONS 273
11.1 Introduction 274
11.2 Bed protections 275
 11.2.1 General 275
 11.2.2 Loose rock 275
 11.2.3 Fascine mattresses 277
 11.2.4 Composite mattresses 279
 11.2.5 Evaluation 282
 11.2.6 Piers 283
11.3 Bank protections 284
 11.3.1 Revetments 284
 11.3.2 Loose rock 284
 11.3.3 Composite mattresses 284
 11.3.4 Rigid structures 286
 11.3.5 Groynes 286
11.4 Shore protection 289
 11.4.1 Revetments and dikes 289
 11.4.2 Groynes and breakwaters 293
 11.4.3 Breakwaters 294
11.5 General aspects revetments 296
 11.5.1 Choice 296
 11.5.2 Transitions 296
 11.5.3 Toes 298

12 ENVIRONMENT 303
12.1 Introduction 304
 12.1.1 General 304
 12.1.2 Ecology 305
 12.1.3 Load and strength 310
12.2 Bed protections 311
 12.2.1 General 311
 12.2.2 Fascine mattresses 311
12.3 Bank protections 312
 12.3.1 General 312
 12.3.2 Vegetation 313
 12.3.3 Vegetation with reinforcing mats 316
 12.3.4 Load reductors 317
12.4 Shore protections 319
 12.4.1 Mangroves 319
 12.4.2 Load reduction 324
 12.4.3 Grass dikes and revetments 325
 12.4.4 Design based on ecology 328
INTRODUCTION TO BED, BANK AND SHORE PROTECTION

13 CONSTRUCTION

13.1 Introduction 332

13.2 Equipment 332

13.2.1 General 332

13.2.2 Land based equipment 333

13.2.3 Waterborne equipment 336

13.3 Bed protections 338

13.3.1 Loose rock 338

13.3.2 Fascine mattresses 339

13.3.3 Prefabricated mats 342

13.4 Bank protections 343

13.4.1 Revetments 343

13.5 River groynes 349

13.6 Shore protections 350

13.6.1 Dikes 350

13.6.2 Groynes and breakwaters 352

13.7 Quality assurance 354

13.7.1 General 354

13.7.2 Tolerances 355

APPENDIX A MATERIAL PROPERTIES 357

A.1 Block weight and size 358

A.2 Geotextiles 364

A.3 Gabions 369

A.4 Physical properties of soil 370

APPENDIX B EXAMPLES 375

B.1 Bank protection along a river mouth 376

B.2 Caisson closure 381

B.3 Breakwater 391

LIST OF SYMBOLS 399

REFERENCES 404

Ph.D. and M.Sc. theses from Delft University of Technology and other research reports from TU Delft 404

Other references 405

INDEX 410
1 INTRODUCTION

Coastal protection along the Javanese coastline (photo Verhagen)
1.1 How to look at protections

1.1.1 Why and when

The interface of land and water has always played an important role in human activities; settlements are often located at coasts, river banks or deltas. When the interface consists of rock, erosion is usually negligible, but finer material can make protection necessary. In a natural situation, the interface moves freely with erosion and sedimentation. Nothing is actually wrong with erosion, unless certain interests are threatened. Erosion is somewhat like weed: as long as it does not harm any crop or other vegetation, no action is needed or even wanted. There should always be a balance between the effort to protect against erosion and the damage that would occur otherwise.

Figure 1-1 shows cyclic sedimentation and erosion of silt (with a period of many decades) seaward of a natural sand ridge. In a period of accretion people have started to use the new land for agricultural purposes. When erosion starts again, the question is whether the land should be protected and at what cost. Sea-defences are usually very costly and if the economic activities are only marginal, it can be wise to abandon the new land and consider the sand ridge as the basic coastline. If a complete city has emerged in the meantime, the decision will probably be otherwise. With an ever increasing population, the pressure on areas like these also increases. Still, it is good practice along a natural coast or bank to build only behind some setback line. This setback line should be related to the coastal or fluvial processes and the expected lifetime of the buildings. For example, a hotel has a lifetime of, say 50 years. It should then be built at a location where erosion will not threaten the building within 50 years, see Figure 1-2. So, in fact the unit for a setback line is not meters but years! These matters are Coastal Zone Management issues and are beyond the scope of this book.
1. INTRODUCTION

Besides erosion as a natural phenomenon, nature can also offer protection. Coral reefs are excellent wave reductors. Vegetation often serves as protection: reed along river banks and mangrove trees along coasts and deltas reduce current velocities and waves and keep the sediment in place. Removal of these natural protections usually mark the beginning of a lot of erosion trouble and should therefore be avoided if possible. So, a first measure to fight erosion, should be the conservation of vegetation at the interface. Moreover, vegetation plays an important role in the ecosystems of banks. Chapter 12 deals with these aspects and with the possibilities of nature-friendly protections.

Finally, it should be kept in mind that, once a location is protected along a coast or riverbank that has eroded on a large scale, the protected part can induce extra erosion and in the end the whole coast or bank will have to be protected. So, look before you leap, should be the motto.

A lot of cases remain where protection is useful. Figure 1-3 gives some examples of bed, bank and shore protections. Along canals, rivers and estuaries, bank protection is often needed to withstand the loads caused by flow, waves or ships. Shore protection structures include seawalls, revetments, dikes and groynes. Bed protection is necessary where bottom erosion could endanger structures, like bridge piers, abutments, in- or outlet sluices or any other structures that let water pass through.

1.1.2 Design

Protections of the interface of land or soil and water are mostly part of a larger project: e.g. a navigation channel, a sea defence system, an artificial island or a bridge. Therefore, the design of a protection should be tuned to the project as a
whole, as part of an integrated design process. In general it can be said that the resulting design should be effective and efficient. Effective means that the structure should be functional both for the user and the environment. This implies that the structure does what it is expected to do and is no threat for its environment. Efficient means that the costs of the (effective) structure should be as low as possible and that the construction period should not be longer than necessary.

A design that combines effectiveness and efficiency can be said to be “value for money.” The intended value becomes manifest in the terms of reference (ToR) which contains the demands for a structure. This ToR has to be translated into concepts (possible solutions). Demands and concepts do not match one to one and a fit between the two is to be reached with trial and error. Promising concepts are engineered and compared. One comparison factor, of course, is costs. The designer’s task to get value for money can be accomplished by compromising between four elements, see Figure 1-4.

![Figure 1-4 Value for money](image)

The design process is of a cyclic nature because it is impossible to go directly from left to right in Figure 1-4. In the first phase, the designer works with a very general notion of the ToR and with some concepts in mind, based on his own or others’ experiences. An integrated design process starts with a rough approach to all four elements in Figure 1-4, refining them in subsequent design phases. Effectivity can be evaluated in terms of functionality, environment and technology, while efficiency is expressed in terms of costs and construction although, of course, there are several overlaps and links between these aspects. They all play a role in each of the design phases, but the focus gradually shifts as indicated in Figure 1-5.

![Figure 1-5 Focus during design process](image)

Level of detail

In any project it is possible to discern various levels of detail. It is good to be aware of the level of detail one is working on and to keep an eye on the adjacent levels. An example of these levels (other divisions are, of course, possible):
1. System (Macro level)
2. Components (Meso level)
3. Parts (Mini level)
4. Elements (Micro level)

Examples of the macro level are e.g. a coastal zone, a water system (river, lake etc.) a harbour or a polder. On the meso level, one can think of components like a sea defence (dike, sea wall etc.), a river bank, a breakwater, a closure dam or an outlet sluice. On the mini level we look at dike protections, bank protections or bed protections. The micro level, finally, consists of elements like stones, blocks etc. In this hierarchy, the title of this book indicates that it treats subjects on the third level. Level 1 should always play a role in the background, see e.g. Section 1.1.1. Level 2 will be treated where and when adequate, while sometimes level 4 also plays a role e.g. when it comes to defining stone sizes. As a consequence of these levels, it can be said that the design of protections in a large project is usually more in the lower part of Figure 1-5, when it comes to the technical development of a plan.

1.1.3 Science or craftsmanship

Protections of the interface of land and water have been made for more than 1000 years. Science came to this field much later, as a matter of fact very recently. The second world war boosted the understanding of waves and coasts. In the Netherlands after 1953, the Delta project had an impact on the research into protection works. In the last decades, major contributions to the design practice have been made, thanks to new research facilities, like (large scale) wind wave flumes, (turbulent) flow measurement devices, numerical models etc. progress has been made in The scientific basis of our knowledge has progressed considerably, but even after 50 years, much of the knowledge of these matters is of an empirical nature. Most formulas in this book are also empirical, based on experiments or experience.

Working with these empirical relations requires insight, in order to prevent misconceived use. The idea underlying this book is to start with a theoretical approach of the phenomena, focussing on understanding them. In the design of protections, especially in the unusual cases, a mix of science and experience is required. Since undergraduates, by definition, lack the latter, a sound theoretical basis and insight into the phenomena is paramount. This book goes one step further than simply presenting empirical design relations; it aims to create a better understanding of these relations. Engineering is an applied science, which then, by definition, means that science is the basis but not the core. Creativity, experience and common sense are just as important.

Computer models play an increasing role in engineering. For a hydraulic engineer, however, a sheet of white paper and a pencil are still essential, especially in the preliminary stage of a design. A hand made sketch of a current or wave pattern is as
valuable as the correct application of calculation rules. For both, a good insight into the physics of the processes involved is indispensable.

1.2 How to deal with protections

1.2.1 Protection against what?

Interfaces between land and water exist in all sizes and circumstances. Figure 1-6 gives an idea of typical values for the loading phenomena in various water systems (of course it is always possible to find an example with different figures).

This book treats the interface stability by looking at the phenomena instead of the water systems. This is more exceptional than it seems, because most textbooks deal with shore protection or river training works or navigation canals etc. Much of the knowledge of these protection works is based on experience and experience is often gained in one of the mentioned fields, not in all of them. This is a pity because many of the phenomena involved are similar: ship waves and wind waves have different sources, but behave very much the same. The same holds for flow in a river, through a tidal closure or an outlet sluice, when it comes to protecting the bed or the bank. Moreover, in river bank protections, wind waves can sometimes play a role, which is often neglected in textbooks on river engineering. Therefore, an attempt is made to find the physical core of all these related problems.

One thing protections have in common, is that their function is to withstand the energy of moving water. Water in motion contains energy: currents, wind waves,
ship movement, groundwater-flow etc, which can become available to transport material. The energy comes from external sources, like wind or ships, and eventually ends up as heat by means of viscous friction. This is not an energy loss but an energy transfer, from kinetic energy, via turbulence, to heat. Turbulence plays an important role and will be discussed in more detail in the next chapter. For now it is sufficient to say that turbulence is related to the transformation of kinetic energy into heat. During this transfer, turbulence contributes to the attack of the interface.

Hydraulic engineering research is often empirical and fragmented. This leads to an avalanche of relations for each subject, while the connections remain unclear. One of the basic ideas of this book is to show similarities and differences between the various phenomena and therefore between the various formulas, in order to clarify the overall picture. Chapter 2 deals with open-channel flow, Chapter 5 with porous flow (flow through pores of granular structures like soil or rock), Chapter 7 with waves and Chapter 9 with ships. These subjects can and will be treated separately, but there are more similarities than many textbooks reveal.

Uniform flow is the starting point for many hydraulic considerations, see Figure 1-7. The equilibrium between gravity and wall friction completely determines the flow. The boundary layer, connected with the wall friction, takes up the whole waterdepth, is turbulent and shows a logarithmic velocity profile. The velocity profile of tide waves (very long waves with typical periods of 12 hours and wave lengths of several hundreds of km's) only slightly differs from the uniform flow velocity profile. It is therefore justified, when designing a protection, to consider tidal currents as a succession of uniform flow situations with different velocities. For wind waves (typical periods of 5 - 10 s and wave lengths of 50 - 150 m), the situation is completely different with a non turbulent orbital motion and a thin turbulent boundary layer, although such a wave in very shallow water will again approach the situation with a tidal wave. Finally, a wave that breaks on a slope, leads to turbulence over the whole waterdepth.

A hydraulic jump and the roller of a broken wave (the bore) are very much the same. This can be seen when the jump is observed from a fixed position and the bore from a position that moves at wave celerity. The turbulence characteristics, caused by the
friction between roller and flowing water, are also similar. Chapter 7 will show this in detail.

The same similarity exists between a fixed object in flowing water and a ship sailing in still water. The water around the object accelerates, while around the ship a return current occurs, both leading to a water level depression.

Behind an object in flow or behind a ship, a wake occurs, where there is a velocity deficit compared with the environment. This velocity difference causes a so-called mixing layer where relatively slowly and quickly moving water mix which leads to a lot of turbulence. In a jet (an outflow in stagnant or slowly moving water) the same velocity differences (but now due to an excess velocity) occur, causing the same mixing layer and turbulence.

The last analogy in this chapter is between pipe flow and porous flow (see Figure 1-11) which is flow through a porous medium like sand or stones. In a straight pipe the (uniform) flow is determined by the wall friction. In an irregular pipe, uniform flow will never really occur, due to the irregularities in the cross-section. Even with a constant discharge, accelerations and decelerations will always occur and, at sharp discontinuities, even flow separation with a mixing layer will take place. The flow between grains, when considered on a micro level, also show continuous accelerations and decelerations and the same basic equations describe this type of flow, including laminar and turbulent flow. In practice, however, the flow is integrated over many grains and pores, because it is not feasible and not necessary to have velocity information of every pore.